機械・精密システム工学科 論文発表

【発表者について】アンダーラインは本学教員および研究員、※は大学院生、卒研生または卒業生

題名	Examination of the Effect of Air Viscosity on Narrow Acoustic Tubes Using FEM Involving Complex Effective Density and Complex Bulk Modulus
掲載雑誌	World Academy of Science, Engineering and Technology, International Journal of Mechanical Science and Engineering vol. 7,No.11, 2013, pp735-739
著者	渡邉光治、山口誉夫、笹島学、 <u>黒沢良夫</u> 、小池美夫
概要	Earphones and headphones, which are compact electro-acoustic transducers, tend to have a lot of acoustic absorption materials and porous materials known as dampers, which often have a large number of extremely small holes and narrow slits to inhibit the resonance of the vibrating system, because the air viscosity significantly affects the acoustic characteristics in such acoustic paths.